Reaction participants Show >> << Hide
- Name help_outline glycine betaine Identifier CHEBI:17750 (CAS: 107-43-7) help_outline Charge 0 Formula C5H11NO2 InChIKeyhelp_outline KWIUHFFTVRNATP-UHFFFAOYSA-N SMILEShelp_outline C[N+](C)(C)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 21 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28943 | RHEA:28944 | RHEA:28945 | RHEA:28946 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Publications
-
Deorphaning a solute carrier 22 family member, SLC22A15, through functional genomic studies.
Yee S.W., Buitrago D., Stecula A., Ngo H.X., Chien H.C., Zou L., Koleske M.L., Giacomini K.M.
The human solute carrier 22A (SLC22A) family consists of 23 members, representing one of the largest families in the human SLC superfamily. Despite their pharmacological and physiological importance in the absorption and disposition of a range of solutes, eight SLC22A family members remain classif ... >> More
The human solute carrier 22A (SLC22A) family consists of 23 members, representing one of the largest families in the human SLC superfamily. Despite their pharmacological and physiological importance in the absorption and disposition of a range of solutes, eight SLC22A family members remain classified as orphans. In this study, we used a multifaceted approach to identify ligands of orphan SLC22A15. Ligands of SLC22A15 were proposed based on phylogenetic analysis and comparative modeling. The putative ligands were then confirmed by metabolomic screening and uptake assays in SLC22A15 transfected HEK293 cells. Metabolomic studies and transporter assays revealed that SLC22A15 prefers zwitterionic compounds over cations and anions. We identified eight zwitterions, including ergothioneine, carnitine, carnosine, gabapentin, as well as four cations, including MPP<sup>+</sup> , thiamine, and cimetidine, as substrates of SLC22A15. Carnosine was a specific substrate of SLC22A15 among the transporters in the SLC22A family. SLC22A15 transport of several substrates was sodium-dependent and exhibited a higher Km for ergothioneine, carnitine, and carnosine compared to previously identified transporters for these ligands. This is the first study to characterize the function of SLC22A15. Our studies demonstrate that SLC22A15 may play an important role in determining the systemic and tissue levels of ergothioneine, carnosine, and other zwitterions. << Less
FASEB J. 34:15734-15752(2020) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Characterization of betaine efflux from rat liver mitochondria.
Porter R.K., Scott J.M., Brand M.D.
In order to investigate the control of endogenous betaine supply to the cytoplasmic enzyme betaine-homocysteine methyltransferase, it was necessary to understand how betaine synthesized within the mitochondrial matrix is transported across the mitochondrial inner membrane. Mitochondria were loaded ... >> More
In order to investigate the control of endogenous betaine supply to the cytoplasmic enzyme betaine-homocysteine methyltransferase, it was necessary to understand how betaine synthesized within the mitochondrial matrix is transported across the mitochondrial inner membrane. Mitochondria were loaded with radiolabelled betaine and efflux was measured in a medium at physiological ionic strength. Efflux of radiolabelled betaine occurred continuously with time. The efflux rate was unaffected by the presence or absence of a source of energy except at high membrane potentials, where betaine efflux rate increased 2-3-fold. Titration of the membrane potential demonstrated a non-ohmic relationship between betaine efflux rate and membrane potential. The rate of betaine efflux was proportional to the matrix betaine concentration up to 9 mM. Efflux was unaffected by addition of analogues of betaine and known mitochondrial transport inhibitors. N-Ethylmaleimide did inhibit efflux by 50%, but evidence suggested that the effect was non-specific. The lack of saturability or other evidence for a transport system suggests that betaine escapes from mitochondria by simple diffusion. The relative diffusion rates of glycine, sarcosine, dimethylglycine and betaine suggest that increasing the degree of N-methylation lowers diffusion rate. << Less
Biochim Biophys Acta 1141:269-274(1993) [PubMed] [EuropePMC]