Reaction participants Show >> << Hide
- Name help_outline L-aspartate Identifier CHEBI:29991 Charge -1 Formula C4H6NO4 InChIKeyhelp_outline CKLJMWTZIZZHCS-REOHCLBHSA-M SMILEShelp_outline [NH3+][C@@H](CC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 76 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,836 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:29287 | RHEA:29288 | RHEA:29289 | RHEA:29290 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Molecular cloning of gltS and gltP, which encode glutamate carriers of Escherichia coli B.
Deguchi Y., Yamato I., Anraku Y.
Two genes encoding distinct glutamate carrier proteins of Escherichia coli B were cloned into an E. coli K-12 strain by using a cosmid vector, pHC79. One of them was the gltS gene coding for a glutamate carrier of an Na+-dependent, binding protein-independent, and glutamate-specific transport syst ... >> More
Two genes encoding distinct glutamate carrier proteins of Escherichia coli B were cloned into an E. coli K-12 strain by using a cosmid vector, pHC79. One of them was the gltS gene coding for a glutamate carrier of an Na+-dependent, binding protein-independent, and glutamate-specific transport system. The content of the glutamate carrier was amplified about 25-fold in the cytoplasmic membranes from a gltS-amplified strain. The gltS gene was located in a 3.2-kilobase EcoRI-MluI fragment, and the gene product was identified as a membrane protein with an apparent Mr of 35,000 in a minicell system. A gene designated gltP was also cloned. The transport activity of the gltP system in cytoplasmic membrane vesicles from a gltP-amplified strain was driven by respiratory substrates and was independent of the concentrations of Na+, K+, and Li+. An uncoupler, carbonylcyanide m-chlorophenylhydrazone, completely inhibited the transport activities of both systems, whereas an ionophore, monensin, inhibited only that of the gltS system. The Kt value for glutamate was 11 microM in the gltP system and 3.5 microM in the gltS system. L-Aspartate inhibited the glutamate transport of the gltP system but not that of the gltS system. Aspartate was taken up actively by membrane vesicles from the gltP-amplified strain, although no aspartate uptake activity was detected in membrane vesicles from a wild-type E. coli strain. These results suggest that gltP is a structural gene for a carrier protein of an Na+-independent, binding protein-independent glutamate-aspartate transport system. << Less
J. Bacteriol. 171:1314-1319(1989) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Cloning and sequencing of a gene encoding a glutamate and aspartate carrier of Escherichia coli K-12.
Wallace B., Yang Y.-J., Hong J., Lum D.
A gene encoding a carrier protein for glutamate and aspartate was cloned into Escherichia coli K-12 strain BK9MDG by using the high-copy-number plasmid pBR322. The gene (designated gltP) is probably identical to a gene recently cloned from E. coli B (Y. Deguchi, I. Yamato, and Y. Anraku, J. Bacter ... >> More
A gene encoding a carrier protein for glutamate and aspartate was cloned into Escherichia coli K-12 strain BK9MDG by using the high-copy-number plasmid pBR322. The gene (designated gltP) is probably identical to a gene recently cloned from E. coli B (Y. Deguchi, I. Yamato, and Y. Anraku, J. Bacteriol. 171:1314-1319). A 1.6-kilobase DNA fragment containing gltP was subcloned into the expression plasmids pT7-5 and pT7-6, and its product was identified by a phage T7 RNA polymerase-T7 promoter coupled system (S. Tabor and C. C. Richardson, Proc. Natl. Acad. Sci. USA 82:1074-1078) as a polypeptide with an apparent mass of 38 kilodaltons. A portion of the gltP polypeptide was associated with the cytoplasmic membrane. The nucleotide sequence of the 1.6-kilobase fragment was determined. It contained an open reading frame capable of encoding a highly hydrophobic polypeptide of 395 amino acids, containing four possible transmembrane segments. Uptake of glutamate and aspartate was increased 5.5- and 4.5-fold, respectively, in strains containing gltP plasmids. Glutamate uptake was insensitive to the concentration of Na+ and was inhibited by L-cysteate and beta-hydroxyaspartate. These results suggest that gltP is a structural gene for a carrier protein of the Na(+)-independent, binding-protein-independent glutamate-aspartate transport system. << Less
J. Bacteriol. 172:3214-3220(1990) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The Escherichia coli SLC26 homologue YchM (DauA) is a C(4)-dicarboxylic acid transporter.
Karinou E., Compton E.L., Morel M., Javelle A.
The SLC26/SulP (solute carrier/sulphate transporter) proteins are a ubiquitous superfamily of secondary anion transporters. Prior studies have focused almost exclusively on eukaryotic members and bacterial members are frequently classified as sulphate transporters based on their homology with SulP ... >> More
The SLC26/SulP (solute carrier/sulphate transporter) proteins are a ubiquitous superfamily of secondary anion transporters. Prior studies have focused almost exclusively on eukaryotic members and bacterial members are frequently classified as sulphate transporters based on their homology with SulP proteins from plants and fungi. In this study we have examined the function and physiological role of the Escherichia coli Slc26 homologue, YchM. We show that there is a clear YchM-dependent growth defect when succinate is used as the sole carbon source. Using an in vivo succinate transport assay, we show that YchM is the sole aerobic succinate transporter active at acidic pH. We demonstrate that YchM can also transport other C(4) -dicarboxylic acids and that its substrate specificity differs from the well-characterized succinate transporter, DctA. Accordingly ychM was re-designated dauA (dicarboxylic acid uptake system A). Finally, our data suggest that DauA is a protein with transport and regulation activities. This is the first report that a SLC26/SulP protein acts as a C(4) -dicarboxylic acid transporter and an unexpected new function for a prokaryotic member of this transporter family. << Less
Mol. Microbiol. 87:623-640(2013) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.