Reaction participants Show >> << Hide
- Name help_outline L-serine Identifier CHEBI:33384 Charge 0 Formula C3H7NO3 InChIKeyhelp_outline MTCFGRXMJLQNBG-REOHCLBHSA-N SMILEShelp_outline [NH3+][C@@H](CO)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 78 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-aminoprop-2-enoate Identifier CHEBI:76565 Charge 0 Formula C3H5NO2 InChIKeyhelp_outline UQBOJOOOTLPNST-UHFFFAOYSA-N SMILEShelp_outline [NH3+]C(=C)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 23 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,337 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:40663 | RHEA:40664 | RHEA:40665 | RHEA:40666 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Bacterial L-serine dehydratases: a new family of enzymes containing iron-sulfur clusters.
Grabowski R., Hofmeister A.E., Buckel W.
Two families of enzymes are described which catalyse identical chemical reactions but differ in their prosthetic groups and hence in their mechanism of action. One family, the pyridoxal-5'-phosphate (PLP)-dependent L-threonine dehydratases, also use L-serine as substrate. The other, hitherto unrec ... >> More
Two families of enzymes are described which catalyse identical chemical reactions but differ in their prosthetic groups and hence in their mechanism of action. One family, the pyridoxal-5'-phosphate (PLP)-dependent L-threonine dehydratases, also use L-serine as substrate. The other, hitherto unrecognized family is the iron-dependent, highly specific bacterial L-serine dehydratases. It has been shown that L-serine dehydratase from the anaerobic bacterium Peptostreptococcus asaccharolyticus contains an iron-sulfur cluster but no PLP. A mechanism for the dehydration of L-serine which is similar, but not identical, to that of the dehydration of citrate catalysed by aconitase is proposed. << Less
Trends Biochem Sci 18:297-300(1993) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
L-serine dehydratase from rat liver. Purification and some properties.
Simon D., Hoshino J., Kroger H.
Biochim Biophys Acta 321:361-368(1973) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Crystal structure of serine dehydratase from rat liver.
Yamada T., Komoto J., Takata Y., Ogawa H., Pitot H.C., Takusagawa F.
SDH (L-serine dehydratase, EC 4.3.1.17) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent dehydration of L-serine to yield pyruvate and ammonia. Liver SDH plays an important role in gluconeogenesis. Formation of pyruvate by SDH is a two-step reaction in which the hydroxyl group of serine is cle ... >> More
SDH (L-serine dehydratase, EC 4.3.1.17) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent dehydration of L-serine to yield pyruvate and ammonia. Liver SDH plays an important role in gluconeogenesis. Formation of pyruvate by SDH is a two-step reaction in which the hydroxyl group of serine is cleaved to produce aminoacrylate, and then the aminoacrylate is deaminated by nonenzymatic hydrolysis to produce pyruvate. The crystal structure of rat liver apo-SDH was determined by single isomorphous replacement at 2.8 A resolution. The holo-SDH crystallized with O-methylserine (OMS) was also determined at 2.6 A resolution by molecular replacement. SDH is composed of two domains, and each domain has a typical alphabeta-open structure. The active site is located in the cleft between the two domains. The holo-SDH contained PLP-OMS aldimine in the active site, indicating that OMS can form the Schiff base linkage with PLP, but the subsequent dehydration did not occur. Apo-SDH forms a dimer by inserting the small domain into the catalytic cleft of the partner subunit so that the active site is closed. Holo-SDH also forms a dimer by making contacts at the back of the clefts so that the dimerization does not close the catalytic cleft. The phosphate group of PLP is surrounded by a characteristic G-rich sequence ((168)GGGGL(172)) and forms hydrogen bonds with the amide groups of those amino acid residues, suggesting that the phosphate group can be protonated. N(1) of PLP participates in a hydrogen bond with Cys303, and similar hydrogen bonds with N(1) participating are seen in other beta-elimination enzymes. These hydrogen bonding schemes indicate that N(1) is not protonated, and thus, the pyridine ring cannot take a quinone-like structure. These characteristics of the bound PLP suggest that SDH catalysis is not facilitated by forming the resonance-stabilized structure of the PLP-Ser aldimine as seen in aminotransferases. A possible catalytic mechanism involves the phosphate group, surrounded by the characteristic sequence, acting as a general acid to donate a proton to the leaving hydroxyl group of serine. << Less
Biochemistry 42:12854-12865(2003) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
Comments
RHEA:40663 part of RHEA:19169